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Effects of a reacting channel wall on turbulent mass transfer
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Abstract

The effects of a turbulent fluid reacting with the channel wall on the turbulent mass transfer were investigated using a Lagrangian
method. The reactants diffused from the bulk of the fluid to the channel walls, where they reacted by an effectively first-order reaction.
The effective reaction rate was found to be diffusion limited for high Schmidt number fluids. The mass transfer coefficient was found to be
independent of reaction rate, but was found to exhibit a strong dependence on the Schmidt number. A correlation of the mass transfer
coefficient as a function of the Schmidt number for both low and high Schmidt numbers was obtained.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Turbulent scalar transport plays a crucial role in many
industrial applications, including the design of reactors,
heat exchangers, and mixing tanks. The interactions of
chemical reactions, fluid mechanics, and mass transfer have
been recognized for decades, but the investigation of inter-
acting turbulent transport phenomena theoretically, exper-
imentally and numerically is limited, at least in numbers,
relative to the literature on turbulent flow. In engineering
practice, the usual numerical approach to turbulent trans-
port is to apply a form of the Reynolds analogy to relate
eddy viscosity to eddy diffusivity, and to apply a second-
order closure for the turbulent momentum and heat bal-
ance equations written in their Reynolds averaged form
[1–3]. Sophisticated numerical techniques, like large eddy
simulation (LES) and direct numerical simulation (DNS),
have also been used to investigate turbulent heat transfer
[4,5] in the Eulerian framework. In the study presented
here, the flow effects on the turbulent mass transfer
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between a turbulent fluid and a smooth, flat channel wall,
with the presence of a first-order reaction, are investigated
using a Lagrangian method (Lagrangian scalar tracking,
LST). The turbulent flows are generated using DNS.

Previous efforts to investigate the effects of a chemical
reaction on turbulent mass transfer include the work of
Kader and Gukhman [6], who developed an analytical
solution for the mass transfer from a turbulent fluid flow
to a long, smooth, and flat wall with a first-order reaction
using a boundary-layer approximation. Hanna et al. [7]
employed a large Schmidt number asymptotic approxima-
tion procedure to derive an analytical solution for the mass
transfer from the wall accompanied by a first-order chem-
ical reaction for liquids in fully developed turbulent flow in
a circular tube. Meyerink and Friedlander [8] and Harriott
and Halmilton [9] have conducted experiments to measure
the mass transfer rate of benzoic acid, which dissolved
from the wall of a pipe into water or glycerine–water solu-
tion in fully developed turbulent flow. Riley et al. [10] per-
formed direct numerical simulations of chemically reacting,
turbulent mixing layers with a binary, irreversible reaction
with no heat release. Leonard and Hill [11] carried out full
turbulent simulations using a pseudo-spectral method in
323 and 643 domains with the presence of a second-order
reaction. Mitrovic and Papavassiliou [12] studied the effects
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Nomenclature

b first coefficient of the Taylor expansion of Kyy

c concentration
c0 concentration fluctuation
C0 average concentration at the entrance
D molecular diffusivity
h half-height of the channel
H distance of a heat marker from the channel wall
J mass flux
K mass transfer coefficient
k reaction rate coefficient
Kij tensor component of eddy diffusivity
l* characteristic length scale, l* = m/u*

n bin number or parameter in Eq. (12)
p probability that a mass marker colliding with

the wall reacts with the wall
P standard normal probability distribution func-

tion
P1 conditional probability for a marker to be at a

location (x, y) at time t, given that it was re-
leased at a known time from a known location
in the channel

pP Poisson probability, the probability that any
mass marker in the flow field react with the wall

Re Reynolds number, Re = Uh/m
Sc Schmidt number, Sc = m/D
Sh Sherwood number, Sh = 4ScK+h+

t* characteristic time scale, t* = m/(u*)2, t* = 1 for
DNS

t time
t0, tf initial and final time of tracking markers

t1/2 half-life of the first-order reaction
U centerline mean velocity
u* friction velocity, u* = (sw/q)1/2

u, v, w velocity in the x, y, and z directions
x, y, z streamwise, normal, and spanwise coordinates
X, Y Lagrangian displacement of a marker from the

source in the x, y directions
Z standard normal distribution function variable

Greek symbols
m kinematic viscosity
q fluid density
r standard deviation of a probability density func-

tion
s shear stress
Dt time step
Dx, Dy bin size in x, y direction

Subscripts and superscripts

ðÞ time-averaged value
~ðÞ vector quantity

()+ value made dimensionless with viscous wall
parameters

()0 fluctuating quantity
()� value at stabilized conditions
()b bulk value
()eff effective value
()w value at the wall of the channel
()0 value at the entrance of the channel
()1 value at infinity
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of a first-order chemical reaction on turbulent mass trans-
fer from a wall to the bulk using Lagrangian methods
(LST). In that study, mass markers were released from
the wall to a turbulent flow field generated using DNS
and transformed to a product later in time using a Poisson
probability function to describe the rate of reaction. The
mass markers used in Ref. [12] were passive and did not
affect the flow. For the case of heavy particles simulated
with Lagrangian methods see [13], and references therein.

The interactions of chemical reactions and transport in
tubular reactors have usually been ignored in textbooks
and engineering software with the assumption of a plug
flow reactor, in which the effects of velocity and tempera-
ture distribution in the direction normal to the vessel walls
on the rate of reactions are not taken into account. A
bright exception to this trend is the work of Churchill
and coworkers, who investigated the interactions of chem-
ical reactions and transport using generalization and
asymptotic methods, and developed design equations for
tubular reactors, in which the effects of radial variations
on the rate of reaction were taken into consideration
[14,15].
The problem presented here and the problem reported
by Kader and Gukhman [6] are similar. In both of them,
the reactants diffuse from a turbulent fluid flow to a long,
flat, and smooth wall, and react with the wall by a first-
order reaction. The LST methodology is used with the goal
of exploring the effects of the turbulence on the mass trans-
fer and on the effective reaction rate. This problem can be
important for applications like electrodiffusional sensors
and semiconductor manufacturing.
2. Background - turbulent mass transfer in the Eulerian

framework

In the Eulerian description of turbulent transport, a sca-
lar is decomposed into a time-averaged value and a fluctu-
ation. For mass concentration, it is c ¼ �cþ c0. The steady
state diffusion equation with no reaction, for 2D flows, is
of the following form:

�uðyÞ o�c
ox
¼ D

o2�c
ox2
þ o2�c

oy2

� �
� o

ox
u0c0
� �

� o

oy
v0c0
� �

ð1Þ
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When the fluid reacts on the surface of the channel wall, the
effective reaction rate can be represented with a first-order
reaction at the wall. The mass flux near the wall has to be
equal to the rate of reaction at the wall

D
o�c
oy

� �
w

¼ k�cw ð2Þ

Making Eq. (2) dimensionless using viscous wall parame-
ters and evaluating it at the wall yields

1

Sc
o�c
oyþ

� �
w

¼ kcw ð3Þ

The mass flux at the wall in the y-direction is given by

J w ¼ Kðcb � cwÞ ð4Þ
The dimensionless mass transfer coefficient, which is de-
fined as K+ = K/u*, where u* is the friction velocity, can
be calculated using the following equation:

Kþ ¼ 1

Sc
dð�c=ðcb � cwÞÞ

dyþ

� �
w

ð5Þ

Using the LST method, Mitrovic et al. [16] obtained the
following limiting expressions for the mass transfer coeffi-
cient for fully developed flow in a channel with a constant
mass flux from the wall and without any reaction:

Kþ ¼ 0:0465 � Sc�0:510 for Sc 6 10 ð6aÞ
Kþ ¼ 0:0835 � Sc�0:690 for Sc P 100 ð6bÞ

By approximating the tensor components of the eddy
diffusivity by the first term of the corresponding Taylor
power expansion, Kader and Gukhman [6] have developed
an expression for the mass transfer from a turbulent fluid
flow to a long, smooth, and flat wall with the presence of
a first-order reaction and obtained expressions of K+ for
the case of Sc� 1 and infinitely fast reaction rate (i.e.
k ?1), as follows:

Kþ ¼ 3
ffiffiffi
3
p

2p

ffiffiffi
b3
p

Sc�2=3 ð7Þ

The ratio of the Sherwood number at any position along the
length of the channel, Sh, divided by the Sherwood number
at the stabilized condition, Sh0, was also estimated as

Sh

Sh0
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� expð�3:62bxþÞ1=3
p ð8Þ

Even though the above two equations provide a represen-
tation of the conductive sublayer where molecular diffusiv-
ity is dominant, since only the first term of the Taylor
expansion was used, the equations can be used to provide
a good approximation to the expected behavior of the mass
transfer coefficient and the Sh.

3. Simulation of a first-order chemical reaction with a

Lagrangian scalar tracking method

Direct numerical simulation methods for the simulation
of turbulent flow fields do not model any terms of the
Navier–Stokes equation. Therefore, DNS is a precise and
reliable method of simulating turbulent flows. Lagrangian
scalar tracking is a methodology that utilizes a tracking
algorithm that monitors the space-time trajectories of
heat/mass markers in a flow field generated by a DNS.
Because of the difficulties in conducting experiments mea-
suring the trajectories of reactants in a turbulent flow field,
a computational approach, like LST, is easier to perform
and can be feasible with the advancement of supercomput-
ing. In the turbulent flow field, a mass marker’s motion can
be decomposed into a convective part and a molecular dif-
fusion part. The convective part can be calculated from the
fluid velocity at the marker position, which is obtained
from the DNS velocity field using a high order interpola-
tion scheme [17]. The molecular motion after each time
step, Dt, is calculated with a random jump from a Gaussian
distribution with zero mean and standard deviation,
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dtþ=Sc

p
, for each one of the three space dimensions

in viscous wall units (this follows from Einstein’s theory for
Brownian motion [18]). Details about the implementation
and validation of the LST methodology, including the sto-
chastic tracking of markers in a turbulent flow field and the
statistical post-processing of the results to obtain scalar
profiles, can be found in Refs. [16,19–28]. A rather brief
description is offered below, with most emphasis on the
simulation methodology for surface reactions.

The building block for the Lagrangian formulation is
the conditional probability density function P 1ðX � x0; Y ;
t � t0j~x0; t0Þ for a marker which is released at x0 at time
t0 to be at a location (X, Y) at time t. This probability
can be interpreted physically as concentration [22,24,29],
or a snapshot of a cloud of contaminants released instanta-
neously from x0 = 0 at t0 = 0. Integrating (or, in the dis-
crete case, summing up) P1 from time t0 to a final time tf

generates the behavior of a continuous source at the
entrance of the channel, a source with a constant mass flux,
which represents the mean concentration in the channel

CðX � x0; Y Þ ¼
Xtf

t¼t0

P 1ðX � x0; Y ; tj~x0; t0Þ

with tf !1 ð9Þ

A schematic of the problem is shown in Fig. 1. The flow
is between two infinite planes and the flow simulation is
conducted on a 128 � 65 � 128 grid in x, y, and z direc-
tions for the DNS. The x axis is along the direction of
the flow while y is the direction normal to the wall. The
half-channel height, h+, is 150 in dimensionless viscous wall
units. The dimensions of the computational box are
4ph � 2h � 2ph. The flow is periodic in the x and z direc-
tions, with periodicity lengths equal to the dimensions of
the computational box in these directions. The DNS used
has been validated quite thoroughly in previous work
[30,31]. After the fluid flow reached fully developed, sta-
tionary state, the reactant mass markers were released into
the fluid flow. This is analogous to the case of a well-mixed
reactant solution in the flow approaching a section of the
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Fig. 1. This figure shows the xy cross-section of the channel with a first-
order reaction and how mass markers are released into the flow field.
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wall where the solution can deposit, similar to a chemical
vapor deposition (CVD) case, or where the wall reacts with
the solution. The mass markers can diffuse from the bulk
fluid to the wall and react with the wall. The reaction equa-
tion can be written as: A ? B, where A is the reactant and
B is the product, which is adsorbed by the wall. The Rey-
nolds number, Re, based on the mean centerline velocity
and the half-channel height of the turbulent flow field is
2660. In order to simulate these conditions, 145,161 mass
markers were released into the turbulent flow field instan-
taneously along the cross-section at the entrance of the
channel as shown in Fig. 1. The release locations were dis-
tributed randomly in the yz cross-section of the channel.

When a marker would collide with the wall, a reflective
boundary condition was applied. The trajectories of all
mass markers were calculated as a function of time,
and stored for post-processing. Since the same data for
marker trajectories were used to simulate different reaction
rates, the information about marker collisions with the wall
were not saved during production runs. Instead, the effects
of the reaction were calculated as part of the post-process-
ing of the data for the marker trajectories, as described
below.

The first step was to determine whether a marker col-
lided with the wall or not within a time step. Consider that
when a mass marker is close enough to the wall, it can
move towards the wall and collide with the wall or it can
move away from the wall. Assuming that very close to
the wall (y ? 0) any meaningful marker movement in the
y-direction is due to molecular diffusion, the random move-
ment in the y-direction follows a normal distribution,
which has a mean of zero and a standard deviation,
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dtþ=Sc

p
. Therefore, the probability that a mass mar-

ker, which is close enough to the wall (at a distance H from
the wall), collides with the wall can be calculated knowing
H and r. If Dy is the random jump of that marker in the y-
direction in the next time step, the probability that the mar-
ker will collide with the wall in the next time step is the
probability that Dy is equal to or larger than H, or
1 � P(H 6 Dy/r), where the cumulative probability P for
a standard normal distribution function is given by
P ðZ 6 Dy
r
Þ ¼

Z Dy
r

�1

1ffiffiffiffiffiffi
2p
p e�x2=2dx ð10Þ

A random check was therefore conducted along the trajec-
tory of every marker to determine whether the marker col-
lided with the wall or not.

One way to validate this approach is to make sure that it
yields zero mass concentration at the wall when the reac-
tion is instantaneous. The wall concentration was calcu-
lated by extrapolating the concentrations at several
positions close to the wall in the viscous sub layer where
it is assumed that the concentration profile is linear
[16,28]. It turned out that for high Schmidt number flows
(Sc P 50), zero wall concentration was obtained. However,
for smaller Schmidt number flows (Sc 6 10), the wall con-
centrations calculated were positive. Thus, the post-pro-
cessing method described above underestimates the
number of collisions, because it neglects the effect of con-
vective motions of the mass markers at the time step before
collision with the wall, an effect that can be important for
small Sc. Therefore, the probability of collision calculated
by this method was multiplied with a correction factor,
which was calculated to be 1.12. This correction factor is
the smallest correction factor that guaranteed to yield zero
wall concentration for the smallest Schmidt number flow
investigated (Sc = 0.1).

The second step of the algorithm was to determine the
collisions that result in reaction. When a mass marker col-
lides with the wall, it has a chance to react with the wall
and get adsorbed by the wall. The probability that a mar-
ker on the wall reacts with the wall is called the reaction
probability, p. This probability determines the nominal
reaction rate, and can be related to the first-order reaction
half-time as t1/2 = ln(0.5)/ln(1 � p). In this study, Sc was
varied from 0.1 (gas) to 1000 (ionic liquid solution), and
p was varied from 0 (no reaction) to 1 (instantaneous reac-
tion). Specifically, Sc = 0.1, 0.7, 6, 10, 50, 100, 500, and
1000; p = 0.1, 0.25, 0.5, 0.75, and 1.0. The time step in
the simulation was set to Dt+ = 0.25 in viscous wall units,
and each simulation was carried out to a final time of
1500 viscous wall units. Four simulations were conducted
for each Sc and p case, each one with different initial veloc-
ity field, as discussed in Section 4.1 below.

4. Results and discussion

4.1. Concentration profiles

Fig. 2 shows the normalized mass concentration contour
on a 2-D cross-section of the channel up to x+ = 6000 with
p = 0.1 and p = 1.0 for the case of Sc = 0.1 (low Sc) and
Sc = 100 (high Sc). In order to calculate the mass concen-
tration, the channel was divided into bins with a height
Dy+ = 1.0 and an initial length Dx+ = 15.0. Higher resolu-
tion was used near the channel entrance. The bin length at
the entrance was 15.0, but it increased by a factor of 1.08
for subsequent bins in the x-direction. Therefore, the bins
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Fig. 2. Concentration contours for four cases: (a) Sc = 0.7, p = 0.1 (b) Sc = 0.7, p = 1.0 (c) Sc = 100, p = 0.1 (d) Sc = 100, p = 1.0. The concentration is
normalized with the concentration at the channel entry, at x0 = 0.

2944 K.T. Nguyen, D.V. Papavassiliou / International Journal of Heat and Mass Transfer 51 (2008) 2940–2949
in column n had a length of 15.0 � 1.08n�1. The mass con-
centration was defined based on the number of mass mark-
ers per unit area. Fig. 2 shows the mass concentration
normalized by the concentration at the entrance of the
channel, C0.

Since the mean fluid velocity is higher in the middle sec-
tion of the channel than the velocity near the wall, the mass
markers in the middle of the channel can move faster in the
streamwise direction than those near the wall. Because of
this velocity profile, and the fact that the mass markers
are uniformly distributed over the channel cross-section
at the plane of their release (x = x0), there is significant
accumulation of mass markers near the walls close to the
channel entrance. This creates very high concentration near
the walls and lower concentration in the middle of the
channel, resulting in mass transfer from the wall region
towards the center of the channel. This is an entrance-
effect, and the region affected by this is the entrance-effect

region. Beyond the entrance-effect region, the effects of
the surface reaction become prominent, and the concentra-
tion near the walls is much lower than that in the middle of
the channel, as shown in the contour plots. The length of
the entrance-effect region increases with higher Sc and
lower p. As shown in Fig. 2, for the Sc = 0.7, p = 1.0 case,
the entrance-effect extends to x+ = 800, while for the
Sc = 100, p = 0.1 case, the effect extends to x+ = 5200. It
can also be seen that the overall concentration and the con-
centration near the wall is lower for lower Sc and higher p.
This is expected, because for lower Sc, the mass markers
can diffuse faster to the wall due to larger molecular diffu-
sion movements, which leads to a faster reaction closer to
the marker release plane. Higher reaction probability also
makes the reaction faster. Finally, a faster reaction will
take more mass markers out of the flow field and lower
both the overall concentration and the concentration near
the wall at specific distance from the marker entry point.

The contour plots in Fig. 2 show data noise. The con-
centration contours are not symmetric across the center
line of the channel, as expected. In order to reduce the
noise, four different simulations were performed for each
set of Sc and p, each with different initial fluid flow veloc-
ities. The average of the results of these four simulations
was calculated, and all the results presented from this point
and on (the mass transfer coefficient, the effective reaction
rate constant, etc.) are these averaged results. Furthermore,
for each simulation, the results were the average of the cal-
culations for the top channel wall and the bottom channel
wall.

4.2. Mass transfer coefficient

The mass transfer coefficient as a function of the dis-
tance from the channel entry can be calculated using Eq.
(5). The dimensionless mass transfer coefficient K+ as a
function of Sc and channel length is shown in Fig. 3 with
p = 1.0 (instantaneous reaction) and a wide range of Sc.
There is a strong dependence of K+ on Sc. Larger K+

was observed for lower Sc. This is expected, because in
lower Sc flows, the mass markers have larger molecular dif-
fusion and, therefore, can diffuse faster to the wall. The
entrance-effect was observed for all Sc numbers with K+

much larger near the entrance, but then K+ drops quickly
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and stabilizes (i.e., reaches a plateau) at around x+/
2h+ = 10. Note that the values of the mass transfer coeffi-
cient, as defined in Eq. (5), are negative at very small dis-
tances from the entrance, because the concentration in
the bulk is smaller than the wall concentration (see for
example Fig. 2a and x+

6 500). These negative values were
not plotted on Fig. 3. The computed values of the stabilized
K+ are in good agreement with Kader and Gukhman’s
analytical results [6] for the asymptotic case of infinitely
fast reaction and high Sc. For Sc = 10.0, Eq. (7) gives
K+ = 0.0141 and the LST-computed K+ value is 0.015.
For Sc = 100, Eq. (7) gives K+ = 0.00305, while the com-
puted K+ value is 0.003. The ratio of the Sherwood number
at any position along the length of the channel, Sh, divided
by the Sherwood number at the stabilized condition, Sh0,
and how that compares to the results of Kader and Gukh-
man [6] (Eq. (8)) is shown in Fig. 4. The numerical results
show that the entrance-effects are much stronger than in
the analytical results. Both numerical and analytical results
show that the mass transfer coefficient reaches a plateau
downstream.

In order to study the effects of Sc and p on turbulent
mass transfer, K+ is plotted as a function of these two vari-
ables, as shown in Fig. 5. The mass transfer coefficient for
the case of a fully developed flow in a channel with a con-
stant mass flux from the wall without any reaction, which is
given by Eq. (6), as a function of Sc is also plotted in Fig. 5.
The effect of Sc on K+ is significant. It can be observed that
K+ follows two different dependencies on Sc, one for
Sc 6 10 and one for Sc P 50. Table 1 shows the correla-
tions of K+ as a function of Sc for different values of p.
The correlations of K+ as a function of Sc with averaged
parameters are:

KþðScÞ ¼ 0:0535Sc�0:529 for Sc 6 10 ð11aÞ
KþðScÞ ¼ 0:1285Sc�0:825 for Sc P 50 ð11bÞ

The effect of reaction probability on K+ is very small
and does not follow any trend. Therefore, it is concluded
that K+ is independent of the reaction rate. The value of
the exponent for low Sc dependence ranges from �0.5103
to �0.5454, and that of high Sc dependence ranges from
�0.8022 to �0.8484. The confidence internal of a t-test
with 95% confidence interval for the exponent for the low
Sc dependence is �0.529 ± 0.037, and that of the exponent



Table 1
Correlations of K+ as a function of Sc for different reaction rates

Reaction
probability

t1/2 (wall
units)

k (wall
units)

Sc 6 10 Sc P 50

0.1 6.58 0.105 K+ = 0.0536
Sc�0.5289

K+ = 0.1283
Sc�0.8306

0.25 2.41 0.288 K+ = 0.0540
Sc�0.5454

K+ = 0.1130
Sc�0.8022

0.5 1.00 0.693 K+ = 0.0539
Sc�0.5180

K+ = 0.1164
Sc�0.8030

0.75 0.50 1.386 K+ = 0.0519
Sc�0.5426

K+ = 0.1376
Sc�0.8382

1.0 0.00 1 K+ = 0.0543
Sc�0.5103

K+ = 0.1472
Sc�0.8484

The reaction probability p is related to the nominal reaction rate constant
as follows: k = ln(2)/t1/2, and t1/2 = ln(0.5)/ln(1-p)
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for the high Sc dependence is �0.825 ± 0.026. Eqs. (11a)
and (11b) are a key finding of this study. It appears that
an important effect of a reactive wall is that the concentra-
tion at the wall is not zero, when the reaction rate is not
infinite. This fact allows the definition of a mass transfer
coefficient based on the difference between the bulk concen-
tration and the wall concentration that, in addition, is not
reaction rate dependent.

In the analysis done by Kader and Gukhman [6], it was
assumed that K+ � �2/3 for Sc� 1 with the presence of a
first-order reaction. The numerical results of Mitrovic et al.
[16] predicted K+ � Sc�0.510 for Sc 6 10 and �Sc�0.690 for
Sc P 100 when there is no reaction and there is a constant
mass flux from the wall to the bulk. The experimental mea-
surements of Shaw and Hanratty [32] of the turbulent mass
transfer coefficient in channels without reaction and a con-
stant mass flux from the wall to the bulk gave an exponen-
tial value of �0.704 for high Sc. The different results of K+

obtained analytically, experimentally, and numerically
address different physical problems. In the study presented
here, and the study by Kader and Gukhman [6], the reac-
tants diffuse from the bulk to the wall and react with the
wall by a first-order reaction. In the other studies, there
was no reaction and the mass markers diffused from the
wall to the bulk with a constant mass flux. The net mass
flux from the bulk to the wall in the present study is not
constant. All of these differences account for the different
exponent values of K+ in different situations.

In order to calculate the mass transfer coefficient for the
whole Sc domain, the generalized equation proposed by
Churchill and Usagi [33] for all phenomena that have dif-
ferent asymptotic behavior at two limits can be used.
According to this generalized equation

KðScÞ
K1ðScÞ ¼ 1þ K0ðScÞ

K1ðScÞ

� �n� �1=n

ð12Þ

where K1 (Sc) and K0(Sc) represent asymptotic expres-
sions for large and small values of Sc, respectively, which
are given by Eqs. (11a) and (11b) For more details of
how to implement this generalized method, refer to Chur-
chill and Usagi [33] and Mitrovic et al. [16]. In order to sat-
isfy this condition with 99% accuracy, n has to be negative
with high absolute value (n 6 �11). By choosing
n = �13.528, the following expression was derived using
Eq. (12), which gives excellent approximation for data with
Sc 6 10 or Sc P 100, (and presumably good approxima-
tions for data with 10 6 Sc 6 100):

Kþ ¼ 0:1285Sc�0:8245

1þ 19:348
Sc

� �4
h i0:074

ð13Þ

This correlation was plotted together with the data points
and is shown in Fig. 6.
4.3. Effective reaction rate constant

The effective reaction rate constant, keff, is the rate con-
stant of the reaction taking place on the channel wall. The
effective reaction rate constant, keff, can be calculated using
Eq. (3). Fig. 7 shows the ratio of the effective reaction rate
constant with any p divided by the effective reaction rate
constant for an instantaneous reaction, keff/keff(p = 1.0),
along the length of the channel for the cases of a low Sc

(Sc = 0.7) and a high Sc (Sc = 100). It can be seen that keff

increases with higher p, as expected. Also, the ratio keff/keff

(p=1.0) in the low Sc case is smaller than in the high Sc case.
This indicates that the reaction probability has a stronger
effect in lower Sc flows. For higher Sc flows, the rate of dif-
fusion of reactants to the wall is very slow and the reaction
is diffusion limited. Therefore, when p increases, keff does
not increase with the same rate in higher Sc flows. In
Fig. 7b, all the curves turn higher and approach 1 as x+

increases. This indicates that the reactions become more
and more diffusion limited downstream.
4.4. Flow effects on reaction

A probability, pP, can be defined that any mass marker
at a specific time step in the flow field will react with the
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(in all directions) by the markers that have reacted by that time.
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wall. This probability density function is different from the
reaction probability, p, which is a binomial probability
density function that a mass marker colliding with the wall
reacts. In other words, p is proportional to the nominal
reaction rate, and pP is proportional to the effective reac-
tion rate. At time step t,

pP ¼ ðnumber of reactions at time step tÞ
=ðnumber of mass markers at time step tÞ ð14aÞ

p ¼ ðnumber of reactions at time step tÞ
=ðnumber of collisions with the wall at time step tÞ

ð14bÞ

Fig. 8 shows the ratio pP/p as a function of p and Sc.
This ratio is actually the probability that any mass marker
in the flow field at a specific time step collides with the wall

pP=p ¼ ðnumber of collisions at timestep tÞ
=ðnumber of mass markers at time step tÞ ð15Þ

This ratio demonstrates the effect of the flow on the
reaction. Without flow, for a first-order reaction, all the
markers would have a chance to react in every time step,
and the ratio would have been equal to one. As shown in
the figure, pP/p increases with lower Sc and lower p. The
mass markers have larger random motions in lower Sc

flows, and, therefore, can diffuse to the wall faster, increas-
ing the collision probability. When p is higher, the reaction
happens faster and the bulk concentration decreases
quickly. This will result in a lower concentration gradient
between the bulk and the wall, and, therefore, it will lower
the diffusion rate of the mass markers to the wall, which
results in lower collision probability.

4.5. Individual marker statistics

Statistical values characterizing individual marker tra-
jectories, like the mean surviving distance and the surviving
probability as a function of time, are plotted in Figs. 9 and
10 for the case of instantaneous reaction (p = 1.0). The sur-
viving distance is defined as the total distance that a marker
travels before it gets adsorbed by the wall [34]. The mean
surviving distance is the average of all the surviving dis-
tances traveled by all the markers that have reacted. The
surviving probability is the ratio of the number of non-
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reacted markers over the total number of makers released
[34], and it is an indication of the conversion of the reac-
tants (conversion is equal to the percentage of molecules
reacted divided by the total molecules that entered the flow,
i.e., equal to 100% minus the surviving probability). The
surviving probability is related to the reactor length
required to achieve a specific conversion. For example,
the time step at which the surviving probability is 50%
can be multiplied by the bulk velocity of the flow to obtain
the reactor length necessary for 50% conversion.

It can be seen that Sc has a strong effect on the mean
surviving distance. In low Sc flows, the markers have larger
random molecular motions and, therefore, the distances
traveled by the markers are farther than those in high Sc

flows. However, in low Sc flows, the markers have a higher
chance to collide and react with the wall. As a result, for
low Sc flows, the mean surviving distance curve will go
up faster initially and approach a plateau later in time,
when most of the markers have reacted, as shown in
Fig. 9. Fig. 10 indicates how fast the reaction occurs for
different Sc flows. At t+ = 1500, more than 90% of the
markers have reacted for Sc = 0.1, while only 5% of the
markers have reacted for Sc = 1000.
5. Conclusions

The interactions of a first-order reaction and turbulent
mass transfer were investigated. Because of the accumula-
tion of slow moving reactants near the wall and the way
the reactants are released into the flow field, the mass con-
centration is much higher near the walls than in the bulk in
the entrance-effect region. The length of the entrance-effect
region increases with higher Sc and lower reaction rate.
Beyond the entrance-effect region, the effects of the surface
reaction dominate and the flow is stabilized.

In the stabilized region, it was found that the reaction is
diffusion limited for large Sc (50 and above). The mass
transfer coefficient was found to be independent of the
reaction rate, but to be strongly dependent on Sc given
by Eqs. (11a) and (11b) for the asymptotic cases for low
and high Sc, respectively. A generalized correlation that
can predict the mass transfer coefficient for the whole range
of Sc is given in Eq. (13). The mass transfer to the wall is
not enhanced by a faster surface reaction, contrary to the
case of mass transfer from the wall followed by a first-order
reaction. In the case presented here, the mass transfer
depends on the diffusion of the reactant to the wall due
to turbulence and due to molecular means. The effective
reaction rate increases with higher nominal rate of reac-
tion. The nominal reaction rate, which is proportional to
the probability of having a reaction when a marker collides
with the wall, has a stronger effect for lower Sc fluids. The
effects of the flow on the reaction are to decrease the reac-
tion rate. High Sc fluids and faster reactions are affected
the most. Finally, the survival probability of reactant
markers within the flow field has been calculated, which
can be directly related to the length of a reactor needed
to achieve a specific conversion.
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